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The present paper deals with a theoretical investigation of a potential step at a channel electrode. The 
study consists in the numerical solution of  the partial differential equations relevant to the transient 
mass balance in the vicinity of the electrode, taking into account the convective term. Although such 
an equation has been investigated previously for both heat and mass transfer, we present the results 
obtained with the help of two packages relying upon either the numerical method of lines (DSS/2) or 
a derived Gear technique (LSODA). Results of the simulation - concentration profile and wall 
concentration gradient - are reported and a comparison with previous results is carried out. Both 
packages used yield very similar current variations which are observed to be in a good agreement with 
experimental data. 
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first coefficient of the power series expan- 
sion for the Airy function u 
channel depth (m) Um 
concentration (mol m -3 or M) w 
reduced concentration x 
first term of the power series expansion x + 
for the logarithmic derivative of the Airy X 
function y 
diffusion coeff• (m 2 s 1) 
hydraulic diameter (m) Y 
Faraday constant 17 
friction factor 17w 
current density (Am 2) 
current (A) F~ 
limiting current (A) 
mass transfer coefficient (m s- ~ ) 
electrode length (m) 0 
Prandtl number 02 
Reynolds number in the empty channel r + 
wall velocity gradient (s -~) v 
Schmidt number 
Sherwood number Subscripts 

Stanton number A, B, j 
time (s) b 
temperature (K) e 
bulk temperature (K) 0 
wall temperature (K) 

reduced temperature 

1, Introduction 

The transient response induced by a potential step can 
yield important data for the study of electrode reac- 
tion mechanisms or  for the measurement of diffusion 
coefficients. Moreover, such responses in electro- 
chemical reactors are relevant to the behaviour 
of systems under electrical pulsations. Because of 
numerous applications in electrochemistry and elec- 
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time required for the current to decrease 
down to twice the steady-state current, 
following a step of potential (s) 
local fluid velocity (ms l) 
mean superficial velocity (ms -J ) 
channel width (m) 
axial coordinate (m) 
axial reduced coordinate after [3] 
axial reduced coordinate (relation 2) 
coordinate in the normal direction to the 
electrode (m) 
reduced y coordinate (relation 2) 
Gamma function 
reduced concentration gradient at the 
wall = (0C/0 Y) Y=0 
reduced concentration gradient at the 
wall, averaged over the electrode 
surface 
reduced time (relation 2) 
reduced time corresponding to t 2 

reduced time after [3] 
kinematic viscosity (m 2 s- ~ ) 

compound 
bulk 
electrode 
standard 
steady state 

trochemical engineering, the transient responses of 
channel electrodes have been studied by several 
authors; most of these studies dealt with numerical 
solution of the differential mass balance relevant to 
the concentration profile formation in the vicinity of 
the electrode. 

Besides the well-known relation of Cottrell, more 
recent investigations [1, 2], based on the assumption of 
a laminar regime in a channel electrode reactor, 
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have taken into account the convective term in the 
expression for the mass balance which was solved by 
means of double Laplace transformation. In addition, 
on the basis of a reversible reaction, A + ve ~ B, 
these authors have assumed the presence of only A 
before electrolysis. In addition, a similar equation has 
been solved by Soliman and Chambr6 [3] in the field 
of heat transfer. Yet, double Laplace transformation 
for heat and mass transfer [1, 3] leads to a simple 
expression of the flux at the wall in the form of an Airy 
function and the profiles of concentration - or tem- 
perature - cannot be easily obtained. Furthermore, 
Soliman and Chambr6 proposed the time variation of 
the dimensionless local heat flux from which the 
overall flux cannot be directly deduced and compared 
with the averaged gradient given by Compton et  al.. 

In a recent paper [4], we proved that the model 
developed previously could be applied to electrolytic 
media containing both species A and B flowing in the 
laminar or turbulent regime. As predicted by [1, 2], 
experiments showed that the duration of transient 
phenomena was much longer when the electrode is 
large and when the wall velocity gradient is low. 
Nevertheless, the observed discrepancy between 
theoretical prediction and practice led us to investi- 
gate other numerical methods for solving the mass 
balance equation. Among the various numerical 
tools available for the solution of partial differential 
equations, calculation packages developed in the 
domains of heat transfer and chemical reaction 
engineering are not often used for electrode processes 
because of the complex boundary conditions at the 
electrodes. Nevertheless, the present case involves very 
simple initial and electrode conditions, with regard to 
the assumptions made. Therefore two different com- 
puter packages have been tested and have allowed the 
time variation of concentration of A as a function of 
the spatial coordinate and also the variation of 
reduced current density to be determined. Both soft- 
ware packages yielded comparable results which are in 
good agreement with experimental data described in a 
companion paper. 

2. Theory 

This section is dedicated to a brief description of 
the model presented previously [1, 2, 4] and to the 
techniques used for solving the partial differential 
equation relevant to the mass balance. 

2.1. M o d e l  

Consider a simple Nernstian reversible electrode reac- 
tion A + e ~ B. The model relies upon weakly 
restrictive assumptions: migration effects have been 
neglected owing to a large excess of supporting elec- 
trolyte; the flow is postulated to be fully established 
and the cell dimensions render negligible the contri- 
bution of axial diffusion. Lastly, the diffusion coef- 
ficients of both species A and B have identical values. 
Therefore, the convective diffusion equation describ- 

ing the variation of concentation for compound j is 
written in the form: 

02c j  
~t - D - - -  u - -  (l) 63y 2 0X 

Consider the linear velocity profile u = sy,  where the 
wall velocity gradient is assumed to be constant. 
Dimensionless variables are defined as follows: 

X = x /L ;  Y = y ( s L - X D - l )  1/3 a n d O =  t (DsZL-2 )  ~/3 

and 

q = cj/cjb (2) 

where L denotes the electrode length and s is the wall 
velocity gradient. Equation 2 is therefore expressed in 
the reduced form: 

aCj 02Cj y ~?Cj 
00 - 2 (3) 

with the boundary conditions: 

0 = 0 Y>~ 0 C~ = 1 (4a) 

0 > 0 Y ~ oe C~ , 1 (4b) 

0 > 0 Y =  0 Cj = Cje (4c) 

0 > 0 X < 0 a n d X >  1 Cj = 1 (4d) 

The values for both electrode concentrations can be 
reached from the value of electrode overpotential and 
the Nernst law, taking into account the relationship 
between electrode and bulk concentrations [4]: 

+ = + (5) 

However, the time variation of the cell current can be 
obtained from the only concentration gradient of the 
substrate and the problem can therefore be restricted 
to compound A. For the sake of simplicity, C will 
denote the concentration of A in the following text. 

2.2. S o f t w a r e  

Equation 3 has been solved through numerical 
techniques with the help of two different packages: 

(i) Differential Systems Simulator, Version 2 (DSS/ 
2) [5] relies upon the numerical method of lines. The 
fourteen integration algorithms implemented can be 
classified as Runge Kutta with explicit truncation 
error estimates. For the present study, several 
algorithms have been tested: Runge Kutta Euler 
which is first-order exact; Runge Kutta Tanaka-5 and 
Runge Kutta England which are both fifth-order 
exact. Owing to the explicit equations involved, these 
methods are known to be hardly suitable for stiff 
problems [6] and other numerical techniques such as 
implicit methods or Gear's algorithms are therefore 
preferred. 

(ii) Odepack consists of several moduli corre- 
sponding to various types of systems of ordinary 
differential equations. This package, proposed by 
Hindmarch et  al. [7, 8], is based on a modified Gear's 
method. In particular, LSODA modulus [8] is a vari- 
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ant version of the LSODE package (Livermore Solver 
for Ordinary Differential Equations) and automati- 
cally selects the right method for stiff or nonstiff 
systems. 

2.3. Integration techniques 

Equation 3 subject to boundary conditions 4 could 
not be directly solved because of numerical prob- 
lems and the principles of the packages described 
above. 

2.3.1. Boundary conditions. The integration is based on 
a finite difference technique in a finite (X-Y) domain. 
Equation 4b could not, therefore, be taken into 
account and a limit for the reduced transverse coor- 
dinate denoted Yma~ should be defined. The mass 
balance equation has to be solved in the vicinity of the 
electrode and the integration domain must comprise 
the diffusional boundary layer. As a consequence Ym,~ 
must be an overestimate for the dimensionless dif- 
fusional layer and calculations reported in Appendix 
1 show that a Ymax value of 3 represents a satisfactory 
integration limit. 

On the other hand, boundary condition 4c allows 
a discontinuity to appear for electrode concentrations 
at time t = 0. This discontinuity does not have 
physical meaning and can be a source of rapid diver- 
gence of the integration routine. Expression 4c was 
then modified by the simple exponential expression: 

0 > 0, Y = 0 C = Ce + (1 -- Ce) eXp(--0/~) 

(4e) 

where z is a time parameter to be adjusted. Values for 
down to 0.002 could be used, corresponding to fairly 

stiff variation of electrode concentrations upon 
closure of the electrical circuit. 

2.3.2. Calculation mesh. The two-dimensional inte- 
gration domain has been divided into 600 small 
elements: the electrode increment, AX, was 1/20 and 
the transverse coordinate increment, AY, was 1/10. 
Partial derivative functions were replaced by finite 
difference approximations in one direction of a two- 
dimensional array; approximations were calculated by 
five-point centred formulae which are fourth-order 
correct. Equation 3 was therefore transformed into a 
system of 600 ordinary differential equations. 

2.4. Concentration gradient and current density 

Solving the system leads to the time variation of the 
concentration profile C(X, Y) from which the reduced 
concentration gradient at the wall, (~C/c3 Y)y=0 can be 
calculated (Appendix 2). F w will denote this gradient in 
the following text. 

Current density, i, is proportional to the wall con- 
centration gradient (~C/@)y=0. The relationship 
between i and Fw depends on the value for s, solely 
affected by the hydrodynamics in the cell. The ratio of 
the gradients averaged over the electrode at time t and 

under steady-state conditions, Fw/Fwo~, is identical 
to the ratio of the transient and steady-state cell 
currents, Ilia. 

3. Results 

3.1. General aspects 

Results presented below are for the case of diffusional 
control, corresponding to a zero wall concentration, of 
the electroactive species A. 

Calculations could be carried out with minicom- 
puters, Bull Mini 6-92 or Sun Workstation 3/50. 
Equation 3, taking into account boundary conditions 
4a, 4d and 4e, was integrated for 0 ranging 0-5; 
the CPU time required varied from 15 min or so 
in the case of LSODA package to approximately 
2 hours with DSS/2 software. LSODA was employed 
without defining explicit formula for the jacobian 
matrix elements. 

The influence of several 'operating' conditions on 
the obtained results have been tested: integration step, 
integration algorithm and, eventually, calculation 
mesh. With regard to mesh size, a satisfactory con- 
vergence could be obtained for a coarse mesh in the 
integration domain (AX = AY = 1/6) ira fifth-order 
algorithm was used. Nevertheless, the thinner calcu- 
lation mesh described above allowed more accurate 
values for concentration gradients. Besides, no 
integration divergence was observed for an integration 
step value below 10 -3  , whatever the numerical 
algorithm considered. Both packages led to nearly 
identical concentration profiles and the maxima1 
deviation observed was below 5%. With respect to 
DSS/2 software, fifth-order algorithms were preferred 
to the simple Euler procedure despite the larger cal- 
culation time required; both Tanaka-5 and England 
yielded the same concentration variations within the 
deviation range __. 0.5%. 

0.02 

J 
c 

Fig. 1. Transient  concentration profiles at the outlet of  the reactor 
(X = l) for various values o f the  reduced time 0; diffusionai control 
assumed; ( - - - )  concentration profile after Cottrell 's law. 
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Figur e 1 displays an example of the concentration 
profile formation at the outlet of the channel elec- 
trode reactor (X = 1): the transient phenomenon is 
observed to occur mainly for reduced time values 
below unity and the reactor operates under steady- 
state conditions as 0 exceeds 3, In addition, concen- 
tration profiles are developed for reduced coordinate 
values Ybelow 3 as Cr_3 is larger or equal to 0.96; this 
fact validates the estimation for the ( X - Y )  domain 
limits and demonstrates that the integration is actually 
performed in the entire diffusional boundary layer. 
The presented profiles are compared with correspond- 
ing profiles predicted by Cottrell's well-known 
equation. Solving this differential mass balance 
equation, regardless of convective phenomena, led to 
the expression for the reduced concentration: 

C = erf (Y/2x/O) (6) 

Figure 1 shows that Expression 6, which is not x 
dependent, represents a good approximation for the 
actual substrate concentration calculated at the reac- 
tor outlet as 0 is below 0.20; however, Equation 6 
cannot be used for larger time values. 

3.2. Concentration gradients and cell current 

Two main parameters govern the concentration 
profiles and resulting current density: time and the 
considered position at the electrode. Both influences 
are discussed separately. 

3.2.1. Variation with time. Compton et al. [1] estab- 
lished the expression for the steady state concen- 
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tration gradient at the wall averaged over the elec- 
trode area, Fw~: 

Fw~ - c0 (7) 
a0F(5/3) 

where a 0 and c o are the first coefficients of the power 
series developments of the Airy function and of its 
logarithmic derivative, respectively. Values of these 
coefficients lead to 

= 0.80 660 

The average concentration gradients, s were 
obtained through numerical integration of the axial 
profile of concentration gradients, Fw, and Fig. 2 
reports their variation with reduced time. As observed 
for concentration profiles, steady-state conditions 
seem to hold for 0 > 1 as the average gradient differs 
by less than 2% from its steady-state limit. In perfect 
agreement with Compton's theory, this limit, calcu- 
lated by both packages, was found to equal 0.812 and 
0.816. 

However, the rate of decrease of the absolute value 
of the concentration gradient largely depends on the 
calculation technique; numerical methods based on 
finite differences yield a decreasing rate twice as large 
as that predicted previously (Fig. 2). As an example, 
the reduced time, 02, taken for the current to fall from 
its initial value to twice the final steady-state value is 
close to 0.35 according to [1] and 0.13 according to the 
present work. 

The variation of the average concentration gradient 
can be compared with both Cottrell's current vari- 

3 II 
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Cottr~l[ + [3] {'or T + < 1 
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Fig. 2. Time variations of  the reduced concen- 
tration gradient at the wall averaged over the 
electrode, Fw, and the ratio Fw/Fwo o identical to the 
ratio I/I~; (9) and (11) in dotted line. 
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ation and the results of Soliman and Chambr& their 
approach shows that, for short times, the heat flux at 
the abscissae x is given by the expression: 

(~r/~y)~_0 
= 1 .0480 /~ /z  + (8) 

(aT/ay),,_o,~ 
where v+ is equal to O/X 2/3. Calculations presented in 
Appendix 3 demonstrate that Relation 8 yields the 
~ariation law for the reduced gradient of temperature, 
or concentration as follows: 

(c~T/ ( tY)y=o ~ - 0.5642/,/0 (9) 

On the other hand, the wall concentration gradient 
calculated from Cottrell's equation is expressed as: 

( a c / a y ) ~ = o  = c~ - Ce (TcDt)ln (10)  

Under the assumption of diffusional control Equation 
] 0 can be reduced to dimensionless form with the help 
of Relations 2 

(ac /ar )y_o = r~, = 1 / (~0)  ','~ ( l l )  

It can be observed that this gradient calculated with- 
out regard to hydrodynamics is relevant to the whole 
electrode surface and is proportional to the cell cur- 
rent in the case of motionless electrolyte. In addition, 
Expressions 9 and 11 are perfectly equivalent, as 
expected. These expressions, plotted as the dotted line 
in Fig. 2, are shown to be a good approximation for 
the solution of Equation 3 for reduced time 0 below 
0.2. During the first instants of  diffusion layer for- 
marion, the concentration profile is very steep and the 
resulting second-order derivative concentration 
prevails over the convective term. As the layer is 
developed at the metal surface, the convective 
phenomena increase and equal the diffusional contri- 
bution and the concentration gradient tends to steady- 
state equilibrium, as a result. 

51.2.2. Variation with electrode abscissae. Figure 3 
reports the variation of the ratio of local and average 
gradient, Fw/f'w, with the axial coordinate: the extent 
of dependence is observed to be an increasing function 
of time. For the first moments of the transient oper- 
ation, the concentration profile is weakly affected by J( 
and the axial distribution of gradient is fairly flat: 
tlhe corresponding current density is almost uniform, 
except at the entrance to the reactor. As the concen- 
tration profile is nearly developed, the ratio tends to 
the asymptotic function (~X ~/3) plotted as the 
dotted line in Fig. 3; it can be observed that the 
integral of the asymptotic function, calculated between 
0 and l, is obviously unity. The exponent of the limit- 
ing function can be explained as follows for the case of 
laminar flow: for such a flow, the wall velocity 
gradient does not depend on coordinates x or y and 
current density is therefore proportional to the wall 
gradient, Fw. Besides, in steady-state conditions, the 
diffusion layer thickness, 6, varies with j&/3 corre- 
sponding to an axial decrease of  current density with 
35-1/3 under diffusion control. 
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Fig. 3. Variation of the reduced wall concentration gradient Fv,/F ~ 
with the electrode abscissae for various values of  0. 

For turbulent flow, the gradient variation with axial 
coordinate seem to be contradictory with mass trans- 
fer theory after which the mass transfer coefficient is 
not affected by electrode length. Equation 3, describ- 
ing the mass balance near the electrode, has been 
established under the assumption that turbulence 
effects could be neglected in the diffusion layer [4]: the 
results obtained demonstrate that turbulent com- 
ponents of velocity and diffusion coefficients should 
be taken into account for a more rigorous treatment of 
fully turbulent flow. 

4. Comparison with experimental results 

The model predictions were compared with experi- 
mental results presented previously [4]. Experiments 
were carried out in a vertical channel electrode reactor 
divided into two symmetrical compartments whose 
dimensions were 5 x 40 x 85mm. The current 
variations were observed for the reduction of pot- 
assium ferricyanide (5 • 10 -3 M) in 1 M NaOH 
medium. Two carefully polished electrodes (dimen- 
sions 40 x 65 ram) were used; the fluid velocity was 
varied between 0.02 and 0.04ms -1 and the corre- 
sponding Reynolds number was in the range 200- 
4000. Owing to the reactor dimensions, the wall velocity 
gradient could not be measured but was estimated 
from the mass transfer rate at the electrode or 
approximated to (6Urn/b) in the case of laminar flow. 

The model was applied to the transient of the 
channel reactor under laminar conditions (Fig. 4). 
Experimental and theoretical variations exhibit sim- 
ilar steady-state currents and current decays with time 
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Fig. 4. T ime  var ia t ion  o f  the cell cur ren t  unde r  diffusional  control  
for  u m = 0 . 0 1 9 4 m s  ~; ( ) exper iment ,  ( - - - )  theoretical  with  
s = 6 u m / b  ( laminar  flow). 

despite a noticeable deviation; this discrepancy might 
be due to error in the s values estimated. 

Although the simulation does not take into account 
possible turbulence phenomena near the electrode, 
comparison has been made in terms of overall current 
for the largest velocity values. The overall mass trans- 
fer coefficient, ka, measured through the reduction of 
ferricyanide ion yielded estimates for the average 
wall velocity gradient with the help of mass and 
momentum transfer analogies. The analogies pro- 
posed by Lin et al. [9] or by Sandall et al. [10] are 
known to correlate both forms of transfer in a satis- 
factory manner for various hydrodynamic conditions 
in fully turbulent liquid flow and were, thereafter, 
selected. Consider the example of fluid velocity Um 
equal to 0.284 m S-~; the mass transfer coefficient was 

determined to be 1.51 x 10 -5 ms -t and correspond- 
ing s values were estimated to be 385 and 710 s-J from 
Sandall's and Lin's models, respectively. As reduced 
time varies with s 2/3, the s range between both corre- 
lations (30% or so) corresponds to a time deviation 
close to 20% for a fixed current value. The variations 
of the cell current calculated on the basis of the two s 
values are observed to represent a good prediction for 
the transient of the reactor as the experimental decay 
lies between the theoretical curves (Fig. 5). 

5. Conclusion 

This paper describes prediction of the transient cur- 
rent induced by a potential step at a channel electrode. 
The validity of the results obtained with integration 
packages has been verified for short times by com- 
parison with Cottrell's law and previous work dealing 
with heat transfer. In addition, predictive results can 
be successfully applied to an actual reactor as good 
agreement has been observed with experimental data. 
Although the simulation shows a dependance of the 
current density on the axial coordinate corresponding 
to a laminar flow near the electrode, the overal tran- 
sient cell current can be predicted for more turbulent 
flow, provided the value of the velocity gradient is 
known. 

Appendix 1 

Equation 3 has to be solved in a finite domain which 
must comprise the diffusional boundary layer. Thus 
the following relationship has to be satisfied: 

Ymax > 5 (A1) 

The thickness of the diffusional layer, 5, obviously 
depends on the hydrodynamics. In addition, the 
relationship between y and Y is a function of the wall 
velocity gradient and, therefore, of hydrodynamics. 
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Linef a/. 
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0'.5 1 1.5 
Time, t (s) 

Fig. 5. T ime var ia t ion of  the cell cur- 
rent  unde r  diffusional  control  for u m = 
0 . 2 8 4 m s  i; ( ) exper iment ,  ( - - - )  
theoretical  with s es t imates  f rom Lin 's  or  
Sandal l ' s  analogies.  
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Estimates for Ym~ have been calculated for both 
laminar and turbulent flow. 

For  the example of  established laminar flow, mass 
transfer performance can be expressed as follows: 

Sh = kddh /D = 1.85(Re Sc dh/X) 1/3 (A2) 

where dh is the hydraulic dimension of  the cell and can 
be approximated by (2b) if the cell width, w, is much 
larger that the cell depth, b. 6 is an increasing function 
of abscissae and 6L = ~5(~-L) is given by 

4 
6L = 1.85(Re Sc dh/L)  '/3 (A3) 

Taking into acount the expression for Reynolds and 
Schmidt numbers, the Condition A1 can be written in 
the form: 

1 ( d h D L ~  '/3 (14) 
Ymax > l - . ~ \  U ' - -~ J  

where u m denotes the average fluid velocity. In the 
present case of  laminar flow, the wall velocity gradient 
is (6u m/b) and it can be deduced that the minimal value 
for the Y limit is close to 1.24. 

For  a fully turbulent flow, estimation of the mini- 
mum value for Ym~x can be achieved through a mass- 
momentum analogy allowing correlation between 
and s. Calculations can be made on the basis of  
Sandalt's analogy [10] which is representative of  
various turbulent flows. In the case of  liquid flowing in 
a reactor, the analogy can be expressed in the approxi- 
nmte form: 

StM/x / f /2  = kd/Umx/f/2) = 0.08Sc 2/3 (AN) 

with a truncation error below 15%. Moreover, s relat- 
ed to the friction factor (f/2): 

2 
f Um 

S -- (A6) 
2 v 

Let A be the dimensionless thickness of  the diffusion 
layer. Equations A5 and A6 yield the expression for A 
as a function of  the Reynolds number, friction factor 
and cell dimensions: 

12.5 
A = Rel /30c /2) l /6  (dh/L) 1/3 (A7) 

]"he friction factor at the wall of a rectangular channel 
is a function of  the Reynolds number according to the 
Blasius relation: 

f / 2  = 0.0395 Re -~ (A8) 

and leads to Equation A9 

A = 21.4Re-~ '/3 (19) 

Neglecting the weak influence of  the reactor dimen- 
sions in Equation A9 and considering Re values larger 
than 3000 for fully turbulent flow allows estimation of 
the minimum value for Ym,~ : Ym~x > 2.07. 

The approximate calculations presented for both 
laminar and turbulent flow show that the integration 
domain should comprise the diffusional layer for a 
l : ~  value of 3. 

Appendix 2 

The wall concentration gradient (8C/8  Y)y=0, denoted 
I'w, is not directly available and can be estimated from 
the gradient value at Y = AY, (OC/6Y)2, and a 
second-order Taylor approximation: 

, = rw = ? r  2 + A t  5- /2 

+  Ar2( ~ ) 
\ ~f-~ k + ' ' "  (A10) 

The values of  the first and the second derivative func- 
tions are provided by the packages; the third order 
term can be reached through a three-point finite dif- 
ference approximation and second-order correction: 

1 -- +4 ) -  

(All) 

Appendix 3 

For short times, Soliman and Chambr6 established 
the approximate expression for the variation of the 
heat flux at x as: 

(OT/ay)y=o _ 1.0480/vz/~7 (A12) 
(8T/Oy)y=O,~ 

where z + = O/X 2/3. In addition, the steady-state wall 
heat flux was calculated by Tribus and Klein [1 l] as: 

3~/3(Tb- Tw)umPr 1:3 
(c3T/@):.=o.~ = F(1/3)x+l/3v (A13) 

where x + is a reduced abscissae defined as (XU3m/SV z) 
after [3]; Tw and Tb are the temperatures at the wall 
and in the bulk solution respectively. Introducing the 
reduced temperature, T, equal to ( T  - Tb)/(Tw - Tb), 
leads to the expression for the reduced temperature 
gradient at steady-state after rearrangement: 

_ 31/3 
(ST/Or)r=o,  oo - F(1/3)X,/3 (114) 

taking into account the analogy between heat and 
mass transfer. Equations A12 and A14 make possible 
the expression for the time reduced gradient with the 
help of Equation 2 

- 1 . 0 4 8 0  x 31/3 
(8T /8  Y )  Y=0 = F(1/3)x/0 (A 15) 

which can be approximated as (8T/OY)r=0 = 
0.5642/x/0 

References 

[1] R.G. Compton and P. J. Daly, J. ElectroanaL Chem. 178 
(1984) 45. 

[2] R.G. Compton and P. R. Unwin, J. ElectroanaL Chem. 205 
(1986) 1. 

[3] M. Soliman and P. L. Chambr6, Int. J. Heat. Mass TransJbr 
10 (1967) 169. 



896 F. L A P I C Q U E  ET AL. 

[4] F. Lapicque, J. M. Hornut, A. Louchkoffand A. Storck, J. 
Appl. Electrochem. 19 (1989) 195. 

[5] W.E.  Schiesser, 'Differential Systems Simulator Version 2, 
an Introduction to the Numerical Method of Lines. Inte- 
gration of Partial Differential Equations'. Lehigh Uni- 
versity, Betleem, U.S.A. 

[6] B.A. Finlayson, 'Non-linear Analysis in Chemical 
Engineering', MacGraw Hill, New-York (1980). 

[7] A.C.  Hindmarsh, UCID-30059-Rev 1 Computer Docu- 
mentation, Lawrence Livermore Laboratory, University 
of California, USA (1975); ACM Signum Newsletter, 
Vol. 15 (1980) p. 10. 

[8] L.R. Petzold, ~Automatic Seiection of Methods for Solving 
Stiff and Nonstiff systems of ODE', Sandia National 
Laboratory Report SAND 80-8230, Sept. (1980). 

[9] C.S. Lin, E. B. Benton, H. L. Gaskill and G. L. Putnam, 
Ind. Eng. Chem. 43 (1951) 2136. 

[10] O.C. Sandall, O. T. Hanna and P. R. Mazet, Can. J. 
Chem. Eng. 58 (1980) 443. 

[11] M. Tribus and J. Klein, 'Forced convection from noniso- 
thermal surfaces', Heat Transfer Symposium, University 
of Michigan (1952) p. 221. 


